Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Test Techniques for STOVL Large-Scale Powered Models

1996-11-18
962251
Predicting and testing for hover performance, both in and out of ground effect, and transition performance, from jet- to wing-borne flight and back, for vertical/short takeoff and landing (V/STOL) configurations can be a difficult task. Large-scale testing of these configurations can provide for a better representation of the flow physics than small-scale testing. This paper will discuss some of the advantages in testing at large-scale and some test techniques and issues involved with testing large-scale STOVL models. The two premier test facilities for testing large- to full-scale STOVL configurations are the Outdoor Aerodynamic Research Facility (OARF) and the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex (NFAC). Other items of discussion will include force and moment measurements, jet efflux decay, wall effects, tunnel flow breakdown, strut interference, and flow visualization options.
Technical Paper

Supporting Constellation Mission Training from Crew to Controllers

2008-06-29
2008-01-2106
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Summary of NASA's Extreme Short Take-Off and Landing (ESTOL) Vehicle Sector Activities

2005-10-03
2005-01-3145
NASA is exploring a research activity to identify the technologies that will enable an Extreme Short Take-Off and Landing (ESTOL) aircraft. ESTOL aircraft have the potential to offer a viable solution to airport congestion, delay, capacity, and community noise concerns. This can be achieved by efficiently operating in the underutilized or unused airport ground and airspace infrastructure, while operating simultaneously, but not interfering with, conventional air traffic takeoffs and landings. Concurrently, the Air Force is exploring ESTOL vehicle solutions in the same general performance class as the NASA ESTOL vehicle to meet a number of Advanced Air Mobility missions. The capability goals of both the military and civil vehicles suggests synergistic technology development benefits. This paper presents a summary of the activities being supported by the NASA ESTOL Vehicle Sector.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Space Station Lessons Learned from NASA/Mir Fundamental Biology Research Program

1998-07-13
981606
Ames Research Center's Life Sciences Division was responsible for managing the development of fundamental biology flight experiments during the Phase 1 NASA/Mir Science Program. Beginning with astronaut Norm Thagard's historic March, 1995 Soyuz rendezvous with the Mir station and continuing through Andy Thomas' successful return from Mir onboard STS-91 in June, 1998, the NASA/Mir Science Program has provided scientists with unparalleled long duration research opportunities. In addition, the Phase 1 program has yielded many valuable lessons to program and project management personnel who are managing the development of future International Space Station payload elements. This paper summarizes several of the key space station challenges faced and associated lessons learned by the Ames Research Center Fundamental Biology Research Project.
Technical Paper

Space Simulation in the Neutral Buoyancy Test Facility

1993-09-01
932554
Various methods have been used to simulate reduced gravity environments for space systems research and development. Neutral buoyancy has been the most universally used simulation of zero-g. This paper describes the facilities, personnel and experimental work that are associated with the Neutral Buoyancy Test Facility (NBTF) at NASA Ames Research Center (ARC). This facility provides a unique underwater environment for the researcher to simulate reduced gravity activities and evaluate the performance of space-related equipment. The NBTF's small size gives it several advantages over larger water facilities. First, a smaller crew ensures a lower overhead. Second, the facility is used for research purposes only, eliminating any scheduling conflicts with astronaut training. Lastly, the small volume of water allows the researcher to more easily vary the water temperature. This feature is ideal for investigations of astronaut thermal comfort and regulation.
Technical Paper

Some Problems in Reliability Estimation

1964-01-01
640564
This paper is concerned with a series of three important problems on reliability where complete solutions are still unavailable. These problems have all been researched and approximate solutions are outlined. The three areas of interest are 1. The government requirement of assurance of high reliability of complex items where the cost of sampling is extremely high. 2. Confidence intervals for a system in series where component data are available, and 3. Estimation of the parameters of the Weibull distribution when sampling terminates after the rth failure is observed in a sample of size n.
Technical Paper

Shortcuts in Cumulative Damage Analysis

1973-02-01
730565
The paper presents a method for shorter evaluation of the fatigue damage done by an irregular sequence of loads. The method looks first for the largest overall range from highest peak to lowest valley, then for the next largest overall range that interrupts the first range, and so on, down until a suitable fraction (for example, 10%) of all reversals have been used. These few reversals form a short history, which will do substantially the same damage as the total history. The process is applied to three long histories selected by the SAE Fatigue Design and Evaluation Committee. The sensitivity of calculated damage to the omission of smaller ranges is computed for plain and for notched specimens. The error is compared with differences produced by different current rules for evaluating damage, by different cycle counting methods, and by smooth specimen simulation of notched parts.
Technical Paper

Secure Large-Scale Airport Simulations Using Distributed Computational Resources

2001-09-11
2001-01-2650
To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of super-computers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance.
Technical Paper

Risk Management for Space Human Support Research and Technology

2005-07-11
2005-01-3009
NASA requires continuous risk management for all programs and projects. The risk management process identifies risks, analyzes their impact, prioritizes them, develops and carries out plans to mitigate or accept them, tracks risks and mitigation plans, and communicates and documents risk information. Project risk management is driven by the project goal and is performed by the entire team. Risk management begins early in the formulation phase with initial risk identification and development of a risk management plan and continues throughout the project life cycle. This paper describes a risk management approach that is suggested for use in NASA's Human Support Research and Technology (HSRT).
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Project Selection for NASA's R&D Programs

2005-07-11
2005-01-2916
The purpose of NASA's Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

2002-04-16
2002-01-1550
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a “glass display” that also included advanced flight symbology, such as a velocity vector.
X